68 research outputs found

    Coherently combining short data segments for all-sky semi-coherent continuous gravitational wave searches

    Get PDF
    We present a method for coherently combining short data segments from gravitational-wave detectors to improve the sensitivity of semi-coherent searches for continuous gravitational waves. All-sky searches for continuous gravitational waves from unknown sources are computationally limited. The semi-coherent approach reduces the computational cost by dividing the entire observation timespan into short segments to be analyzed coherently, then combined together incoherently. Semi-coherent analyses that attempt to improve sensitivity by coherently combining data from multiple detectors face a computational challenge in accounting for uncertainties in signal parameters. In this article, we lay out a technique to meet this challenge using summed Fourier transform coefficients. Applying this technique to one all-sky search algorithm called TwoSpect, we confirm that the sensitivity of all-sky, semi-coherent searches can be improved by coherently combining the short data segments. For misaligned detectors, however, this improvement requires careful attention when marginalizing over unknown polarization parameters. In addition, care must be taken in correcting for differential detector velocity due to the Earth's rotation for high signal frequencies and widely separated detectors.Comment: 15 pages, 3 figures, 1 tabl

    An all-sky search algorithm for continuous gravitational waves from spinning neutron stars in binary systems

    Full text link
    Rapidly spinning neutron stars with non-axisymmetric mass distributions are expected to generate quasi-monochromatic continuous gravitational waves. While many searches for unknown, isolated spinning neutron stars have been carried out, there have been no previous searches for unknown sources in binary systems. Since current search methods for unknown, isolated neutron stars are already computationally limited, expanding the parameter space searched to include binary systems is a formidable challenge. We present a new hierarchical binary search method called TwoSpect, which exploits the periodic orbital modulations of the continuous waves by searching for patterns in doubly Fourier-transformed data. We will describe the TwoSpect search pipeline, including its mitigation of detector noise variations and corrections for Doppler frequency modulation caused by changing detector velocity. Tests on Gaussian noise and on a set of simulated signals will be presented.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90779/1/0264-9381_28_21_215006.pd

    Gravitational Wave Studies: Detector Calibration and an All-Sky Search for Spinning Neutron Stars in Binary Systems.

    Full text link
    The Laser Interferometer Gravitational wave Observatory (LIGO) Project has constructed three, kilometer-scale gravitational wave detectors in the United States. These detectors have achieved unprecedented levels of differential-length sensitivity in a quest to directly observe the spacetime oscillations produced by gravitational waves from astrophysical sources. These waves can provide new observations and insight into some of the most energetic, exotic, and violent events in the Universe. Strain calibration of gravitational wave detectors is crucial for waveform reconstruction and source localization. Scientific reach is substantially improved if the calibration uncertainty can be reduced to the level of 1%. Toward this end, we have developed two fundamentally different precision test mass actuator calibration techniques to compare with the traditional calibration method, which measures a critical component of the key interferometer servo control loop that determines the gravitational wave output signal. We have compared our results from the three techniques in order to investigate systematic uncertainties associated with each technique. A potential class of gravitational wave sources are rapidly spinning neutron stars with non-axisymmetric mass distributions, which generate quasi-monochromatic continuous gravitational waves. While search methods for unknown isolated spinning stars are approaching maturity, there have been no previous searches for unknown spinning stars in binary systems. Current search methods for isolated stars are already computationally limited; expanding the parameter space searched to include binary systems is a formidable challenge. We present a new hierarchical binary search method called TwoSpect, which exploits the periodic orbital modulations of the continuous waves by searching for patterns in doubly Fourier-transformed data. We will describe the TwoSpect search pipeline, including its mitigation of detector noise variations and corrections for Doppler frequency modulation caused by changing detector velocity. Tests on simulated data and on a sample of detector data will be presented.Ph.D.PhysicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/78838/1/egoetz_1.pd

    Accurate measurement of the time delay in the response of the LIGO gravitational wave detectors

    Get PDF
    We present a method to precisely calibrate the time delay in a long baseline gravitational-wave interferometer. An accurate time stamp is crucial for data analysis of gravitational wave detectors, especially when performing coincidence and correlation analyses between multiple detectors. Our method uses an intensity-modulated radiation pressure force to actuate on the mirrors. The time delay is measured by comparing the phase of the signal at the actuation point with the phase of the recorded signal within the calibrated data stream used for gravitational wave searches. Because the signal-injection path is independent of the interferometer's control system, which is used for the standard calibration, this method can be an independent verification of the timing error in the system. A measurement performed with the 4 km interferometer at the LIGO Hanford Observatory shows a 1 µs relative accuracy when averaging over 50 min. Our understanding of the systematic time delay in the detector response has reached the level of 10 µs

    Calibration Uncertainty for Advanced LIGO's First and Second Observing Runs

    Get PDF
    Calibration of the Advanced LIGO detectors is the quantification of the detectors' response to gravitational waves. Gravitational waves incident on the detectors cause phase shifts in the interferometer laser light which are read out as intensity fluctuations at the detector output. Understanding this detector response to gravitational waves is crucial to producing accurate and precise gravitational wave strain data. Estimates of binary black hole and neutron star parameters and tests of general relativity require well-calibrated data, as miscalibrations will lead to biased results. We describe the method of producing calibration uncertainty estimates for both LIGO detectors in the first and second observing runs.Comment: 15 pages, 21 figures, LIGO DCC P160013

    Blip glitches in Advanced LIGO data

    Get PDF
    Blip glitches are short noise transients present in data from ground-based gravitational-wave observatories. These glitches resemble the gravitational-wave signature of massive binary black hole mergers. Hence, the sensitivity of transient gravitational-wave searches to such high-mass systems and other potential short duration sources is degraded by the presence of blip glitches. The origin and rate of occurrence of this type of glitch have been largely unknown. In this paper we explore the population of blip glitches in Advanced LIGO during its first and second observing runs. On average, we find that Advanced LIGO data contains approximately two blip glitches per hour of data. We identify four subsets of blip glitches correlated with detector auxiliary or environmental sensor channels, however the physical causes of the majority of blips remain unclear

    physiCal: A physical approach to the marginalization of LIGO calibration uncertainties

    Get PDF
    The data from ground based gravitational-wave detectors such as Advanced LIGO and Virgo must be calibrated to convert the digital output of photodetectors into a relative displacement of the test masses in the detectors, producing the quantity of interest for inference of astrophysical gravitational wave sources. Both statistical uncertainties and systematic errors are associated with the calibration process, which would in turn affect the analysis of detected sources, if not accounted for. Currently, source characterization algorithms either entirely neglect the possibility of calibration uncertainties or account for them in a way that does not use knowledge of the calibration process itself. We present physiCal, a new approach to account for calibration errors during the source characterization step, which directly uses all the information available about the instrument calibration process. Rather than modeling the overall detector's response function, we consider the individual components that contribute to the response. We implement this method and apply it to the compact binaries detected by LIGO and Virgo during the second observation run, as well as to simulated binary neutron stars for which the sky position and distance are known exactly. We find that the physiCal model performs as well as the method currently used within the LIGO-Virgo collaboration, but additionally it enables improving the measurement of specific components of the instrument control through astrophysical calibration.Comment: 10 pages, 4 figure

    Search for Gravitational Waves from Scorpius X-1 in LIGO O3 Data With Corrected Orbital Ephemeris

    Get PDF
    Improved observational constraints on the orbital parameters of the low-mass X-ray binary Scorpius~X-1 were recently published in Killestein et al (2023). In the process, errors were corrected in previous orbital ephemerides, which have been used in searches for continuous gravitational waves from Sco~X-1 using data from the Advanced LIGO detectors. We present the results of a re-analysis of LIGO detector data from the third observing run of Advanced LIGO and Advanced Virgo using a model-based cross-correlation search. The corrected region of parameter space, which was not covered by previous searches, was about 1/3 as large as the region searched in the original O3 analysis, reducing the required computing time. We have confirmed that no detectable signal is present over a range of gravitational-wave frequencies from 25Hz25\textrm{Hz} to 1600Hz1600\textrm{Hz}, analogous to the null result of Abbott et al (2022). Our search sensitivity is comparable to that of Abbott et al (2022), who set upper limits corresponding, between 100Hz100\textrm{Hz} and 200Hz200\textrm{Hz}, to an amplitude h0h_0 of about 10−2510^{-25} when marginalized isotropically over the unknown inclination angle of the neutron star's rotation axis, or less than 4×10−264\times 10^{-26} assuming the optimal orientation.Comment: 8 pages, 3 figures, 2 tables. Typeset with AASTeX 6.3.1. Accepted for publication in The Astrophysical Journal. arXiv admin note: text overlap with arXiv:2209.0286

    Gravitational waves: search results, data analysis and parameter estimation

    Get PDF
    The Amaldi 10 Parallel Session C2 on gravitational wave (GW) search results, data analysis and parameter estimation included three lively sessions of lectures by 13 presenters, and 34 posters. The talks and posters covered a huge range of material, including results and analysis techniques for ground-based GW detectors, targeting anticipated signals from different astrophysical sources: compact binary inspiral, merger and ringdown; GW bursts from intermediate mass binary black hole mergers, cosmic string cusps, core-collapse supernovae, and other unmodeled sources; continuous waves from spinning neutron stars; and a stochastic GW background. There was considerable emphasis on Bayesian techniques for estimating the parameters of coalescing compact binary systems from the gravitational waveforms extracted from the data from the advanced detector network. This included methods to distinguish deviations of the signals from what is expected in the context of General Relativity
    • …
    corecore